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What the devil determines each particular variation?  What makes a tuft of feathers 

come on a cock’s head, or moss on a moss-rose?

Some authors believe it to be as much 

the function of the reproductive system 

to produce individual differences ... as 

to make the child like its parents.

Charles Darwin  1859a

Might constrained mutability be as advantageous as sex?
David G. King   Depts. of Anatomy and Zoology,  Southern Illinois University Carbondale

The object [of sexual reproduction] 

is to create those individual differences 

which form the material out of which 

natural selection produces new species.

August Weismann  1889   

Historical background

Sex as a source of variation

That sexual reproduction functions as a source of variation seemed 

evident in the 1800s (see quotations by the portraits above). 

However, by the mid-1900s sex had been designated as “the queen of 

problems in evolutionary biology” (Bell 1982).  

Because organisms reproducing sexually must produce twice as many offspring to 

compete effectively against asexuals, identifying benefit sufficient to overcome such a 

huge selective disadvantage had become a major theoretical challenge.

Nevertheless, recent theoretical models have finally been vindicating the 

old view:

“August Weismann [1889] might have been right all along in arguing that sex evolved 

to generate variation” (Otto, 2008).

Sex really is “a parental adaptation to the likelihood of the offspring having 

to face changed or uncertain circumstances” (Williams 1975).

Mutation as a source of variation

Unfortunately, in contrast to recent understanding of sex, the prevailing 

explanation for the existence of mutation remains mired in an outdated 

argument, that “mutations are accidents, and accidents will happen” 

(Sturtevant 1937). 

“[N]atural selection of mutation rates has only one possible direction, that of reducing 

the frequency of mutation to zero. . . . So evolution takes place, not so much 

because of natural selection, but to a large degree in spite of it” (Williams 1966). 

“[S]election lacks foresight, and no one has described a plausible way to provide it” 

[Dickinson & Seger 1999].

“[A] well-established and supported tenet of evolutionary theory is that, because most 

new mutations are deleterious, selection in all organisms will act to reduce mutation 

rate toward the physiology- or selection-imposed minimum” (Elmore et al. 2012).

But this “tenet” depends on simplistic assumptions which properly apply only to  

mutator alleles (i.e., those which reduce the genome-wide fidelity of DNA replication 

while remaining unlinked to any resulting mutations).  Indirect selection can imbue 

genomes with “foresight,” just as readily as direct selection can shape intelligently-

foresightful patterns of animal behavior.

In spite of such limited applicability, the view that mutations are accidents 

is still commonly wielded against the idea that any style of mutation could 

be advantageous.  

Introduction

This poster advocates a very simple idea:  

Mutability can be an evolved function, not just residually 

imperfect reproduction.  

Several sources of genetic variation – not only sexual 

recombination but also certain mechanisms of mutation -- can 

confer selective advantage.  Variation arising during sexual 

reproduction provides a model for addressing this idea.

But acceptance of this idea is impeded by another 

simple idea:  A long-standing theoretical argument holds 

that selection necessarily favors minimal mutation rates. 

Nevertheless, certain protocols for mutation have much in 

common with meiotic recombination.  

Protocols for variation

Most styles of mutation are not “random.”  Nor is most mutational variation 

“unstructured with respect to survival” (Caporale & Doyle 2013).  

Patterns which increase the probability that individual mutations might be 

advantageous (or, equivalently, reduce the probability that they will be deleterious) 

may be metaphorically characterized as mutation “protocols” (Doyle et al. 2006).  

“Now here, you see, it takes all the running you can do, 
to keep in the same place.”

What next?

Several concepts merit further exploration.

Genomes have evolved to evolve (cf. Earl & Deem 2004).  They 

exploit a wide range of protocols to manage the potential 

advantages as well as the risks of genetic variation.

Sexual reproduction with meiotic recombination is perhaps the most 

sophisticated (and expensive) of these protocols.  

The surprising prevalence of several additional mutational mechanisms 

suggests that they too should be understood as implicit protocols for 

stochastic production of variation rather than as flaws in replication 

fidelity.  Resulting changes in DNA sequence are better viewed not as 

“mistakes” or “accidents” but as products of these protocols. 

If variation from sexual recombination can offer generation-by-

generation advantage sufficient to outweigh its “seemingly 

overwhelming” cost, then perhaps other mechanisms for 

producing variation can also be maintained by positive 

selection.

As long as the burden of deleterious mutation does not exceed 

the 50% cost of sex, positive selection for a protocol should be 

considered as plausible.

Mutation protocols can thereby be integrated, together with sexual 

recombination, into patterns of “genetic intelligence” (Thaler 1994).  

Mutation protocols complement physiological and epigenetic 

mechanisms for responding to environmental variation, while 

offering emergent opportunities for evolutionary innovation.  

Mutation protocols form the basis for creative bet-hedging in a complex 

and inconstant world.  The selective value of mutation protocols, 

although difficult to measure in nature, should be addressed through 

modelling of indirect selection (e.g. Carja et al. 2014).  

Understanding the genetic basis for evolvability, especially 

for evolutionary innovation in complex adaptive behavior, 

may well depend on appreciating the role of implicit 

mutation protocols.

Wherever the Red Queen reigns, genetic variation is vital.  

In an ever-changing environment, one must be continually evolving --

not to increase one’s fitness but simply to keep from losing ground. 

A reliable supply of mutations may be as selectively advantageous 

as the variation produced through sexual reproduction. 

engravings by John Tenniel--

Indirect selection

So how can natural selection favor mutation protocols whose 

benefit only occurs in subsequent generations?

Of course, natural selection cannot foresee the future.  

But although natural selection cannot directly favor genomic 

patterns which facilitate propitious styles of variation, indirect

selection for mutation protocols occurs when favorable variants 

arise within heritable constraints that are themselves linked to 

those variants (DG King 2012).  

An example:  The potential for indirect selection is most clearly 

illustrated by site-specific elevation of localized mutation rate, as 

represented by simple sequence repeats.  

When favorable variants arise, they retain the site-specific mutation rate 

by which they arose.  Selection for the favorable variant then also 

indirectly but inevitably favors the locally elevated mutation rate for this 

particular style of mutation, thus facilitating future variation under similar 

constraints.

Indirect selection should be expected to exploit any mechanism 

of mutation whose utility offers even a fraction of the adaptive 

value provided by sexual reproduction.

Indirect selection can plausibly shape mutation protocols just as 

effectively as natural selection can shape phenotypic adaptation.

Van Valen 1973, quoting Lewis Carroll’s Through the Looking Glass

Charles Darwin 1859b

According to Richard Dawkins, 
“Evolution is something that happens, willy-

nilly, in spite of all the efforts of the 
genes to prevent it happening.”

A feeble sort
of evolution !

Here, adaptation 
happens “on purpose.”
Genomes have evolved 
protocols to provide 

useful variation.

How does 
evolution work 
in this world ?

Examples

A “protocol for incremental adjustability” (a “tuning 

knob”) can be implemented by simple sequence 

repeats.

Simple sequence repeats (SSRs, STRs, microsats), 

although commonly mis-characterized as “junk DNA” or as 

“meaningless stutters,” provide abundant, relatively safe, 

quantitative variation within many eukaryotic genes (Gemayel

et al. 2010, King et al. 1997).   

A “protocol for redundancy and innovation” can be 

implemented by transposable elements.

Even though they “play a profoundly generative role in 

genome evolution …, transposons are today almost 

universally referred to as ‘invaders,’ ‘parasites,’ or ‘parasitic 

sequences’ ” (Fedoroff 2012).

Indeed, a genome “inexorably driven towards greater 

complexity” by “an internal arms race with its own DNA,” has 

recently been inferred from the evolution of genes which 

constrain transposon activity (Jacobs et al., 2014).

But instead of disparaging TEs as “parasites,” it might be 

more fruitful to appreciate such an “inexorable drive” as the 

functioning of a feedback system, operating through indirect 

selection, which regulates the production of innovative 

variation.  

Metaphors of “selfish genes” and “parasitic DNA” may retain some heuristic value for gene-level 

understanding, but these same metaphors can seriously mislead when extended to address 

higher levels that yield integrated regulation of adaptive organismal form.  

By expanding our repertoire of genetic metaphors to embrace evolutionary change as well as 

immediate fitness, we may better appreciate how certain mutational mechanisms can comprise 

“protocols” (Doyle et al. 2006) for “natural genetic engineering” (Shapiro 1997, 2005). 

A “protocol for mix-and-match” is implemented by meiotic recombination.

While quite sophisticated, sex is also remarkably expensive.  Once sex is recognized as 

one among several protocols for variation, the others may seem less surprising or 

exceptional.  

 

 

 

ABSTRACT:  Might constrained mutability be as advantageous as sex? 

David G King, Southern Illinois University Carbondale 

     In an inconstant environment, fitness depends on variation as 

well as replication fidelity.  Indeed, the blind, undirected variation 

which emerges through sexual reproduction is practically essential 
for population fitness, at least among most eukaryotes.  And yet, 

paradoxically, sex imposes a huge burden, entailing a 50% 

reduction in fitness relative to the efficiency of asexual 
reproduction.  Identifying benefits sufficient to outweigh such high 

cost remains an elusive goal.   

     Mutations also inflict obvious cost.  Because blind, undirected 
mutations are often deleterious, it has long been argued that natural 

selection must necessarily favor the minimization of mutation rates 

(though a low level of mutation evidently remains inevitable).  
However, this classical argument rests on overly simplistic 

assumptions, ignoring the existence of site- and sequence-specific  

mutational protocols, such as those based on transposable elements 

and tandem repeats, that can have surprisingly high mutation rates.  

If the cost for any particular mutational protocol does not exceed 
the seemingly inordinate cost of sex, then selection might plausibly 

shape its constraints to exploit the balance between costs and 

benefits of undirected variation.  In fact, meiotic recombination 
itself is just such a mutational protocol, one which produces 

molecular variation within especially sophisticated constraints.   

     The prevalence of sexual reproduction demonstrates a 
fundamental principle:  When suitably constrained, undirected 

variation can be powerfully advantageous.  This principle might 

apply not just to meiotic recombination but to other styles of 
mutational variation as well.   


