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What the devil determines each particular variation? What maRes a tuft of feathers

come on a cock_’s head, or moss on a moss-rose? Charles Darwin 1859

Mutations are accidents, and
accidents will happen.
Alfred Sturtevant 1937

Some authors believe it to be as much
the function of the reproductive system
to produce individual differences ... as
to make the child like its parents.
Charles Darwin 1859

Rethinking mutation

Introduction

The concept that production of variation is a
proper biological function is older than Darwin’s
Origin of Species.

But this idea has been eclipsed for most of the
past century, by a conviction that “mutations are
accidents.”

Unnecessarily conflating the fundamental
meaning of “mutation” (any alteration of DNA
sequence) with a presumption of “replication
error” can obscure the role of several mutational
mechanisms as protocols * for generating
variation.

* A protocol is an implicit rule or architecture that
defines permissible avenues for behavior. A
mutation protocol adjusts the probabilities for
mutations of particular styles, at particular loci

Traditional

“Mutation” carries a connotation of accidental
error, such that selection is expected to
minimize all processes of mutation.

The vast majority of mutations that affect
fitness are deleterious.

Mutational processes have not been
positively adapted or focused by natural
selection.

Recombination is excluded by definition
from the concept of “mutation,” because the
resulting alterations of DNA sequence are
widely recognized as adaptive.

Reconceived

Several sources of variation, including
some of those commonly called “mutation,”
can confer adaptive benefit.

Not all mutational processes are
necessarily disadvantageous.

Indirect selection can exploit varying
probabilities of mutational effect to create
adaptive mutation protocols.

Excluding recombination from the category
of “mutation” is arbitrary, dating from the
“beads-on-a-string” era when genes were
conceptualized as discrete entities.

Summary / What next?

The traditional argument, that selection
must minimize mutation rates, has potential
validity only for loci where mutator alleles
would yield a genome-wide increase in
mutations, and even then only when the
vast majority of mutations are deleterious.

In spite of such limited applicability, this
argument is commonly wielded against the
idea that any style of mutation could be
advantageous.

But mutation protocols circumvent this
argument. Indirect selection is capable of
shaping, and indeed has shaped, numerous
mechanisms that facilitate variation.
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For too long evolutionary theory has simply presumed the
adequacy of mutation to sustain adaptive evolution. Although
mutation is acknowledged as the ultimate source for all standing
genetic variation, that source is presumed to require no further
explanation than “accidents will happen.”

The conflation of “mutation” with mere “accident” and *error” has
deep historical and theoretical roots. Emphasis on a gene-centric
perspective has even led to defining “fitness” in terms of exact
copies of a gene being passed from one generation to the next

A few classical examples

“Evolution is something that happens, willy-nilly, in spite of all the
efforts of the replicators (and nowadays of the genes) to prevent it
‘happening... By definition, a copying error is to the disadvantage
of the gene which is miscopied.” R Dawkins 1976

“The fittest possible degree of stabillty is absolute stabilty. In
other words, natural selection of mutation rates has only one
possible direction, that of reducing the frequency of mutation to
zero... Evolution has probably reduced mutation rates to far below
species optima, as the result of unrelenting selection for zero
mutation rate in every population... So evolution takes place, not
50 much because of natural selection, but to a large degree in
spite of it GC Williams 1966

“Any organism as it now exists must be regarded as a very
complex physicochemical machine with delicate adjustments of
part to part. Any haphazard change made in this mechanism
would almost certainly result in a decrease of efficiency...

Only an extremely small proportion of mutations may be expected
to improve a part or the interrelation of parts in such a way that
the fitness of the whole organism for its available environments is

Standing variation, originating from
“accidental” mutation, has been sufficient
for all adaptation.

Evolvability is nothing more than a
fortuitous but inevitable consequence of
imperfect DNA replication.

Because individual organisms do not
evolve, evolving special features to confer
evolvability must require group selection.

Group selection is implausible under most
circumstances (it is much weaker than
individual selection).

The evident adequacy of standing variation
is a phenomenon which calls for explanation
beyond imperfect replication.

Evolvability depends on evolved mutation
protocols, which impose “grammatical”
constraints on sequence variation.

Evolvability is an emergent consequence
of mutation protocols. Group selection
need not be invoked.

Mutation protocols are shaped by indirect
selection, which can be effective at all levels
except narrowly-defined gene selection.

‘What I propose to do is to inquire into the type of hereditary differences ... which nature might use

as materials with which to accomplish evolution.

R Goldschmidt 1940

Sample protocols

Reversible, incremental »

Variable-number tandem repeats can behave
like “tuning knobs” for practically any aspect of

depend on appreciating the role of
mutation protocols.

Indirect selection

Indirect selection for facilitated variation (i.e., for a
mutation protocol) occurs whenever favorable variants
arise within constraints that are themselves heritable
and linked to the favorable variants.

The potential for indirect selection is most clearly
illustrated by site-specific elevation of mutation rate,

such as that imposed by tandem repeats. When favorable
mutants arise, they retain the site-specific mutation rate by
which they arose. Selection for the favorable mutant then
also indirectly but inevitably favors localized elevation of
mutation rate for this particular style of mutation, thus
facilitating future variation of a similar style.

The potential benefit-to-risk ratio for mechanisms that
generate variation spans a wide range, from nucleotide
substitution (generally minimized by selection) to sexual
reproduction (supported by elaborate and expensive
mechanisms).

Indirect selection should be expected to shape and
maintain, as mutation protocols, any mechanism of
mutation whose utility offers even a fraction of the
adaptive value provided by sexual reproduction.
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interest. It continues to be used against any suggestion that
mechanisms of mutation might evolve to facilitate evolution.
Here is one example:

Copy-and-paste of functional

Transposable elements play a major role in
genome evolution, creating permissive and

existed, as a consequence of random, undirected
recombination.

modules possibly necessary conditions for adaptive Reproducing sexually imposes a huge, two-fold fitness
“However, a well-established and supported tenet of evolutionary innovation and diversification. cost, relative to parthenogenesis. But sex prevails in most
theory is that, because most new mutations are deleterious, - eukaryotic lineages, thereby demonstrating the powerful
selection in all organisms will act to reduce mutation rate toward . Various microorganisms utilize transposition and advantage that variation can provide.
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ABSTRACT: Reconciliation can emerge from realization that the classical view

Throughout the development of evolutionary theory, two divergent
views of variation have competed for the allegiance of biologists. The
dominant, classical view has been that mutations are nothing more than
accidents. This view, which has been argued in essentially the same
terms throughout the past century, holds that adaptive diversification of
lineages is simply the inevitable consequence of imperfect reproduction
paired with natural selection and genetic drift. Challenging this view is
an appreciation that living systems appear to be organized at many lev-
els to produce abundant variation, while some styles of variation appear
to facilitate evolutionary adaptation. Because the classical view has
become a substantial hindrance to understanding how evolvability
emerges from molecular sources of natural genetic variation, this con-
flict needs to be explicitly acknowledged and addressed.

Further reading about mutation and evolvability .

depends on particular but often unspoken assumptions that do not apply
to all sources of variation. Mutations, in the broadest sense that encom-
passes any heritable change in DNA sequence, arise through a wide
range of molecular processes. At one extreme (most closely allied to the
classical view) lie extrinsic agents of DNA damage, with subsequent
failure of adequate repair. In sharp contrast are certain highly-organized
mechanisms ("mutational protocols") with a low probability of harm and
an evident (though difficult to quantify) probability for beneficial effect,
most notably those underlying reciprocal crossing-over during sexual
reproduction. In between these extremes lie many mutational mecha-
nisms that present a broad spectrum of potential harm-to-benefit ratios.
At least some of these could have been positively shaped by selection to
minimize harm while simultaneously increasing evolvability.
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