



ABSTRACT:  

     Throughout the development of evolutionary theory, two divergent 
views of variation have competed for the allegiance of biologists.  The 
dominant, classical view has been that mutations are nothing more than 
accidents.  This view, which has been argued in essentially the same 
terms throughout the past century, holds that adaptive diversification of 
lineages is simply the inevitable consequence of imperfect reproduction 
paired with natural selection and genetic drift.  Challenging this view is 
an appreciation that living systems appear to be organized at many lev-
els to produce abundant variation, while some styles of variation appear 
to facilitate evolutionary adaptation.  Because the classical view has 
become a substantial hindrance to understanding how evolvability 
emerges from molecular sources of natural genetic variation, this con-
flict needs to be explicitly acknowledged and addressed.


     Reconciliation can emerge from realization that the classical view 
depends on particular but often unspoken assumptions that do not apply 
to all sources of variation.  Mutations, in the broadest sense that encom-
passes any heritable change in DNA sequence, arise through a wide 
range of molecular processes.  At one extreme (most closely allied to the 
classical view) lie extrinsic agents of DNA damage, with subsequent 
failure of adequate repair.  In sharp contrast are certain highly-organized 
mechanisms ("mutational protocols") with a low probability of harm and 
an evident (though difficult to quantify) probability for beneficial effect, 
most notably those underlying reciprocal crossing-over during sexual 
reproduction.  In between these extremes lie many mutational mecha-
nisms that present a broad spectrum of potential harm-to-benefit ratios.  
At least some of these could have been positively shaped by selection to 
minimize harm while simultaneously increasing evolvability. 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