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A lesson from sex:   

Abundant variation can be worth its high price. 

David G King, Southern Illinois University Carbondale 

 Blind, undirected mutational variation is mostly deleterious, but without 
it evolution would grind to a halt.  Blind, undirected variation from sexual re-

production is vital for maintaining population fitness, though it comes at a 

very steep price.  In between these two contrasting ideas -- that replication 
errors are bad but inevitable while sex is good though expensive -- lies a sel-

dom appreciated reality:  Quite generally, sources of suitably constrained 

variation can be favored by natural selection in spite of seemingly exorbitant 
cost.   

 To be sure, sex generates an especially conservative style of variation, 

guaranteeing a diversity of genotypes simply by rearranging pre-existing al-
leles.  But sex also imposes a huge burden:  In addition to the many hazards 

of mating, sex entails a 50% reduction in fitness relative to the efficiency of 

asexual reproduction, and meiotic recombination separates favorable alleles 
just as readily as it brings them together.  Quantifying benefits sufficient to 

balance these high costs remains an elusive goal.  Nevertheless, the preva-

lence of sexual reproduction among eukaryotes proves that at least one 
source of blind, undirected variation can be worth an enormous price.  This 

understanding of sexual reproduction should prompt us to consider that some 

mutational sources of variation might similarly confer benefit sufficient to 
outweigh cost, even if their benefit cannot yet be clearly appraised.   

 The idea that selection could favor an elevated frequency for any type of 

mutational variation has long been dismissed:  "[N]atural selection of muta-
tion rates has only one possible direction, that of reducing the frequency of 

mutation rates to zero" (GC Williams, 1966).  But such sweeping denial is 

based on a simplistic argument whose underlying assumptions do not apply 
to several highly-constrained mutational mechanisms, including expansion 

and contraction of simple sequence repeats, transposition of mobile elements, 

gene duplication, horizontal gene transfer, localized hypermutability, and 
phase switching.  Such mechanisms bias the styles and sites for resulting mu-

tations, thereby offering an opportunity to shift the balance between harm 

and benefit.  Abundant evidence that these mechanisms have contributed to 
adaptive evolution should suggest that their associated constraints might con-

stitute "protocols" for generating advantageous variation.  If the obvious 

harm from deleterious mutation does not exceed the stunningly high cost of 
sex, then natural selection might also deem the benefits from any such source 

of variation (including an emergent potential for innovative exploration) as 

being well worth the price.     Website:  www.siumed.edu/anatomy/KingCoS/index.htm 
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